Cell polarity: Fixing cell polarity with Pins
نویسنده
چکیده
A protein complex is assembled in a step-wise manner at the apical pole of Drosophila neuroblasts. This complex organizes the apical-basal polarity of asymmetrically dividing neuroblasts, and may act via G-protein signalling.
منابع مشابه
Galphai generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts.
Drosophila neuroblasts divide asymmetrically by aligning their mitotic spindle with cortical cell polarity to generate distinct sibling cell types. Neuroblasts asymmetrically localize Galphai, Pins, and Mud proteins; Pins/Galphai direct cortical polarity, whereas Mud is required for spindle orientation. It is currently unknown how Galphai-Pins-Mud binding is regulated to link cortical polarity ...
متن کاملG i generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts
Drosophila neuroblasts divide asymmetrically by aligning their mitotic spindle with cortical cell polarity to generate distinct sibling cell types. Neuroblasts asymmetrically localize G i, Pins, and Mud proteins; Pins/G i direct cortical polarity, whereas Mud is required for spindle orientation. It is currently unknown how G i–Pins–Mud binding is regulated to link cortical polarity with spindle...
متن کاملIdentification of an Aurora-A/Pins/ Dlg Spindle Orientation Pathway using Induced Cell Polarity in S2 Cells
Asymmetric cell division is intensely studied because it can generate cellular diversity as well as maintain stem cell populations. Asymmetric cell division requires mitotic spindle alignment with intrinsic or extrinsic polarity cues, but mechanistic detail of this process is lacking. Here, we develop a method to construct cortical polarity in a normally unpolarized cell line and use this metho...
متن کاملIdentification of an Aurora-A/PinsLINKER/ Dlg Spindle Orientation Pathway using Induced Cell Polarity in S2 Cells
Asymmetric cell division is intensely studied because it can generate cellular diversity as well as maintain stem cell populations. Asymmetric cell division requires mitotic spindle alignment with intrinsic or extrinsic polarity cues, but mechanistic detail of this process is lacking. Here, we develop a method to construct cortical polarity in a normally unpolarized cell line and use this metho...
متن کاملMicrotubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts.
Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Galphai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughter-cell-size a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 10 شماره
صفحات -
تاریخ انتشار 2000